A study of drug-carrier interactions in dry powder inhaler formulations using the Andersen cascade impactor, X-ray microanalysis and time of flight aerosol beam spectrometry (TOFABS).
نویسندگان
چکیده
The purpose of this study was to determine the in vitro deposition of both drug (albuterol sulfate) and carrier (lactose) particles in relation to each other from a dry powder inhaler formulation using an Andersen cascade impactor (ACI) and time of flight aerosol beam spectrometry (TOFABS). In addition, scanning electron microscopy (SEM) combined with X-ray microanalysis was employed to distinguish albuterol sulfate from lactose. Drug particles apparently penetrated deeper into the impactor than lactose particles contained in the formulation. In some certain stages of impactor, drug particles were separated from lactose particles. Although the TOFABS cannot distinguish between albuterol sulfate and lactose, the TOF spectra obtained from the Aerosizer would appear to be partly indicative of the interactions which exist between drug and carrier. One symmetrical TOF peak was obtained from drug or lactose alone. The TOF peak of the drug was always lower than the TOF of lactose. The times obtained for each powder between experiments were highly reproducible and typical of material and particle size. The use of SEM-X-ray microanalysis also allowed some qualitative characterization of shape and state of association of the two components.
منابع مشابه
Preparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol
The aim of this study was to prepare dry powder inhalers (DPIs) containing amphotericin B-loaded solid lipid nanoparticles (AMB-SLNs) as an alternative approach for prevention of pulmonary aspergillosis. For solubilizing AMB in small amounts of organic solvents ion paired complexes were firstly formed by establishing electrostatic interaction between AMB and distearoyl phosphatidylglycerol (DSP...
متن کاملPreparation, Statistical Optimization and In-vitro Characterization of a Dry Powder Inhaler (DPI) Containing Solid Lipid Nanoparticles Encapsulating Amphotericin B: Ion Paired Complexes with Distearoyl Phosphatidylglycerol
The aim of this study was to prepare dry powder inhalers (DPIs) containing amphotericin B-loaded solid lipid nanoparticles (AMB-SLNs) as an alternative approach for prevention of pulmonary aspergillosis. For solubilizing AMB in small amounts of organic solvents ion paired complexes were firstly formed by establishing electrostatic interaction between AMB and distearoyl phosphatidylglycerol (DSP...
متن کاملDesign and application of a new modular adapter for laser diffraction characterization of inhalation aerosols.
An inhaler adapter has been designed for the characterization of the aerosol clouds from medical aerosol generators such as nebulizers, dry powder inhalers (dpis) and metered dose inhalers (mdis) with laser diffraction technology. The adapter has a pre-separator, for separation of large particles (i.e. carrier crystals) from the aerosol cloud before it is exposed to the laser beam. It also has ...
متن کاملPhysicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery
In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug - cyclosporine A - for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-...
متن کاملPreparation, optimization, and in vitro simulated inhalation delivery of carvedilol nanoparticles loaded on a coarse carrier intended for pulmonary administration
Carvedilol (CAR) is a potent antihypertensive drug but has poor oral bioavailability (24%). A nanosuspension suitable for pulmonary delivery to enhance bioavailability and bypass first-pass metabolism of CAR could be advantageous. Accordingly, the aim of this work was to prepare CAR nanosuspensions and to use artificial neural networks associated with genetic algorithm to model and optimize the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical & pharmaceutical bulletin
دوره 48 2 شماره
صفحات -
تاریخ انتشار 2000